Extensions 1→N→G→Q→1 with N=C22xC4 and Q=D7

Direct product G=NxQ with N=C22xC4 and Q=D7
dρLabelID
D7xC22xC4112D7xC2^2xC4224,175

Semidirect products G=N:Q with N=C22xC4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C22xC4):1D7 = C2xD14:C4φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4):1D7224,122
(C22xC4):2D7 = C4xC7:D4φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4):2D7224,123
(C22xC4):3D7 = C23.23D14φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4):3D7224,124
(C22xC4):4D7 = C28:7D4φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4):4D7224,125
(C22xC4):5D7 = C22xD28φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4):5D7224,176
(C22xC4):6D7 = C2xC4oD28φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4):6D7224,177

Non-split extensions G=N.Q with N=C22xC4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C22xC4).1D7 = C28.55D4φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4).1D7224,36
(C22xC4).2D7 = C14.C42φ: D7/C7C2 ⊆ Aut C22xC4224(C2^2xC4).2D7224,37
(C22xC4).3D7 = C2xDic7:C4φ: D7/C7C2 ⊆ Aut C22xC4224(C2^2xC4).3D7224,118
(C22xC4).4D7 = C2xC4.Dic7φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4).4D7224,116
(C22xC4).5D7 = C28.48D4φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4).5D7224,119
(C22xC4).6D7 = C2xC4:Dic7φ: D7/C7C2 ⊆ Aut C22xC4224(C2^2xC4).6D7224,120
(C22xC4).7D7 = C23.21D14φ: D7/C7C2 ⊆ Aut C22xC4112(C2^2xC4).7D7224,121
(C22xC4).8D7 = C22xDic14φ: D7/C7C2 ⊆ Aut C22xC4224(C2^2xC4).8D7224,174
(C22xC4).9D7 = C22xC7:C8central extension (φ=1)224(C2^2xC4).9D7224,115
(C22xC4).10D7 = C2xC4xDic7central extension (φ=1)224(C2^2xC4).10D7224,117

׿
x
:
Z
F
o
wr
Q
<